Color Degree Condition for Large Heterochromatic Matchings in Edge-Colored Bipartite Graphs
نویسندگان
چکیده
Let G = (V,E) be an edge-colored graph, i.e., G is assigned a surjective function C : E → {1, 2, · · · , r}, the set of colors. A matching of G is called heterochromatic if its any two edges have different colors. Let (B,C) be an edge-colored bipartite graph and d(v) be color degree of a vertex v. We show that if d(v) ≥ k for every vertex v of B, then B has a heterochromatic matching of cardinality at least k − 1. By taking B = Kn,n and k = n, our result solves a conjecture by Stein and Brualdi on the transversals of latin squares, since a latin square of order n corresponds to a proper edge-coloring of the complete bipartite Kn,n with n colors, a transversal of a latin square corresponds to a perfect matching of Kn,n and a latin transversal of a latin square corresponds to a perfect heterochromatic matching of Kn,n.
منابع مشابه
Heterochromatic Matchings in Edge-Colored Graphs
Let G be an (edge-)colored graph. A heterochromatic matching of G is a matching in which no two edges have the same color. For a vertex v, let d(v) be the color degree of v. We show that if d(v) ≥ k for every vertex v of G, then G has a heterochromatic matching of size ⌈ 5k−3 12 ⌉ . For a colored bipartite graph with bipartition (X,Y ), we prove that if it satisfies a Hall-like condition, then ...
متن کاملSufficient Conditions for the Existence of Perfect Heterochromatic Matchings in Colored Graphs
Let G = (V, E) be an (edge-)colored graph, i.e., G is assigned a mapping C : E → {1, 2, · · · , r}, the set of colors. A matching of G is called heterochromatic if its any two edges have different colors. Unlike uncolored matchings for which the maximum matching problem is solvable in polynomial time, the maximum heterochromatic matching problem is NP-complete. This means that to find both suff...
متن کاملThe heterochromatic matchings in edge-colored bipartite graphs
Let (G,C) be an edge-colored bipartite graph with bipartition (X,Y ). A heterochromatic matching of G is such a matching in which no two edges have the same color. Let N c(S) denote a maximum color neighborhood of S ⊆ V (G). We show that if |N c(S)| ≥ |S| for all S ⊆ X, then G has a heterochromatic matching with cardinality at least d |X| 3 e. We also obtain that if |X| = |Y | = n and |N c(S)| ...
متن کاملColor neighborhood and heterochromatic matchings in edge-colored bipartite graphs
Let (G,C) be an (edge-)colored bipartite graph with bipartition (X, Y ) and |X| = |Y | = n. A heterochromatic matching of G is such a matching in which no two edges have the same color. Let N c(S) denote a maximum color neighborhood of S ⊆ V (G). In a previous paper, we showed that if N c(S) ≥ |S| for all S ⊆ X or S ⊆ Y , then G has a heterochromatic matching with cardinality at least d3n−1 8 e...
متن کاملBest lower bound for the maximum heterochromatic matchings in edge-colored bipartite graphs
Let (B,C) be an (edge-)colored bipartite graph with bipartition (X,Y ), i.e., B is assigned a mapping C : E(B) → {1, 2, · · · , r}, the set of colors. A matching of B is called heterochromatic if its any two edges have different colors. Let N (S) denote a maximum color neighborhood of S ⊆ V (B). We show that if |N (S)| ≥ |S| for all S ⊆ X, then B contains a heterochromatic matching with cardina...
متن کامل